Search results for "Stable distribution"
showing 10 items of 10 documents
Bayesian inference for the extremal dependence
2016
A simple approach for modeling multivariate extremes is to consider the vector of component-wise maxima and their max-stable distributions. The extremal dependence can be inferred by estimating the angular measure or, alternatively, the Pickands dependence function. We propose a nonparametric Bayesian model that allows, in the bivariate case, the simultaneous estimation of both functional representations through the use of polynomials in the Bernstein form. The constraints required to provide a valid extremal dependence are addressed in a straightforward manner, by placing a prior on the coefficients of the Bernstein polynomials which gives probability one to the set of valid functions. The…
High Frequency Data Analysis in an Emerging and a Developed Market
2002
We compare distributional properties of high frequency (tick by tick) returns of stocks traded at the NASDAQ, NYSE, and BSE (Budapest Stock Exchange). In particular, we model returns with a mixture of a degenerate (zero) and a symmetric stable distribution. We measure time with the number of successive price changes on the market and study the convergence of the index of stability on increasing time horizons. We apply results to calculate expected waiting times to reach given levels of value at risk.
A mathematical model for the phase of sexual reproduction in monogonont rotifers
2000
Recently, the optimal sex allocation in monogonont rotifers is studied in [1], and, as a closely related question, the relative frequencies of the relevant types of mictic females. The authors focus on the evolution of the age at which young mictic females lose their fertilization susceptibility and they address the threshold age of fertilization that maximizes resting egg production. Assuming that a stationary population is achieved, with stable age distribution, they obtain their results, without knowing the stationary population. Our aim is to study this problem in the framework of the theory of nonlinear age-dependent population dynamics developed by G. F. Webb in [13], which is more ap…
α-stable distributions for better performance of ACO in detecting damage on not well spaced frequency systems
2014
Abstract In this paper, the Ant Colony Optimization (ACO) algorithm is modified through α -stable Levy variables and applied to the identification of incipient damage in structural components. The main feature of the proposed optimization is an improved ability, which derives from the heavy tails of the stable random variable, to escape from local minima. This aspect is relevant since the objective function used for damage detection may have many local minima which render very challenging the search of the global minimum corresponding to the damage parameter. As the optimization is performed on the structural response and does not require the extraction of modal components, the method is pa…
Infinitely Divisible Distributions
2020
For every n, the normal distribution with expectation μ and variance σ 2 is the nth convolution power of a probability measure (namely of the normal distribution with expectation μ/n and variance σ 2/n). This property is called infinite divisibility and is shared by other probability distributions such as the Poisson distribution and the Gamma distribution. In the first section, we study which probability measures on the real line are infinitely divisible and give an exhaustive description of this class of distributions by means of the Levy–Khinchin formula.
Inference based on the affine invariant multivariate Mann–Whitney–Wilcoxon statistic
2003
A new affine invariant multivariate analogue of the two-sample Mann–Whitney–Wilcoxon test based on the Oja criterion function is introduced. The associated affine equivariant estimate of shift, the multivariate Hodges-Lehmann estimate, is also considered. Asymptotic theory is developed to provide approximations for null distribution as well as for a sequence of contiguous alternatives to consider limiting efficiencies of the test and estimate. The theory is illustrated by an example. Hettmansperger et al. [9] considered alternative slightly different affine invariant extensions also based on the Oja criterion. The methods proposed in this paper are computationally more intensive, but surpri…
Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials
2017
Abstract Many applications in risk analysis require the estimation of the dependence among multivariate maxima, especially in environmental sciences. Such dependence can be described by the Pickands dependence function of the underlying extreme-value copula. Here, a nonparametric estimator is constructed as the sample equivalent of a multivariate extension of the madogram. Shape constraints on the family of Pickands dependence functions are taken into account by means of a representation in terms of Bernstein polynomials. The large-sample theory of the estimator is developed and its finite-sample performance is evaluated with a simulation study. The approach is illustrated with a dataset of…
A matrix-valued Bernoulli distribution
2006
AbstractMatrix-valued distributions are used in continuous multivariate analysis to model sample data matrices of continuous measurements; their use seems to be neglected for binary, or more generally categorical, data. In this paper we propose a matrix-valued Bernoulli distribution, based on the log-linear representation introduced by Cox [The analysis of multivariate binary data, Appl. Statist. 21 (1972) 113–120] for the Multivariate Bernoulli distribution with correlated components.
Regression models for multivariate ordered responses via the Plackett distribution
2008
AbstractWe investigate the properties of a class of discrete multivariate distributions whose univariate marginals have ordered categories, all the bivariate marginals, like in the Plackett distribution, have log-odds ratios which do not depend on cut points and all higher-order interactions are constrained to 0. We show that this class of distributions may be interpreted as a discretized version of a multivariate continuous distribution having univariate logistic marginals. Convenient features of this class relative to the class of ordered probit models (the discretized version of the multivariate normal) are highlighted. Relevant properties of this distribution like quadratic log-linear e…
Affine equivariant multivariate rank methods
2003
The classical multivariate statistical methods (MANOVA, principal component analysis, multivariate multiple regression, canonical correlation, factor analysis, etc.) assume that the data come from a multivariate normal distribution and the derivations are based on the sample covariance matrix. The conventional sample covariance matrix and consequently the standard multivariate techniques based on it are, however, highly sensitive to outlying observations. In the paper a new, more robust and highly efficient, approach based on an affine equivariant rank covariance matrix is proposed and outlined. Affine equivariant multivariate rank concept is based on the multivariate Oja (Statist. Probab. …